Unusual late-fall wildfire in a pre-Alpine Fagus sylvatica forest reduced fine roots in the shallower soil layer and shifted very fine-root growth to deeper soil depth

Sub Levels


  • Montagnoli, A., Terzaghi, M., Giussani, B., Scippa, G. S. & Chiatante, D. An integrated method for high-resolution definition of new diameter-based fine root sub-classes of Fagus sylvatica L. Ann. For. Sci. 75, 76. https://doi.org/10.1007/s13595-018-0758-y (2018).

    Article 

    Google Scholar 

  • Montagnoli, A. et al. Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). Forest Ecol. Manag. 43, 26–34. https://doi.org/10.1016/j.foreco.2018.06.044 (2019).

    Article 

    Google Scholar 

  • Amendola, C. et al. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agr. Ecosyst. Environ. 239, 236–245. https://doi.org/10.1016/j.agee.2017.01.025 (2017).

    Article 
    CAS 

    Google Scholar 

  • Finér, L., Ohashib, M., Noguchic, K. & Hirano, Y. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecol. Manag. 262, 2008–2023. https://doi.org/10.1016/j.foreco.2011.08.042 (2011).

    Article 

    Google Scholar 

  • McCormack, M. L. et al. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518. https://doi.org/10.1111/nph.13363 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. P. Natl. Acad. Sci. USA 94, 7362–7366. https://doi.org/10.1073/pnas.94.14.7362 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411. https://doi.org/10.1007/BF00333714 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. & Wang, W. The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci. Rep. 5, 9940. https://doi.org/10.1038/srep09940 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hendrick, R. L. & Pregitzer, K. S. The demography of fine roots in a northern hardwood forest. Ecology 73, 1094–1104. https://doi.org/10.2307/1940183 (1992).

    Article 

    Google Scholar 

  • Montagnoli, A. et al. Influence of soil temperature and water content on fine root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur. J. For. Res. 133, 957–968. https://doi.org/10.1007/s10342-014-0814-6 (2014).

    Article 

    Google Scholar 

  • Yuan, Z. Y. & Chen, H. Y. H. Effects of disturbance on fine root dynamics in the boreal forests of Northern Ontario, Canada. Ecosystems 16, 467–477 (2013).

    Article 

    Google Scholar 

  • Bryanin, S. & Kobayashi, M. Fire-derived charcoal affects fine root vitality in a post-fire Gmelin larch forest: Field evidence. Plant Soil 416, 409–418. https://doi.org/10.1007/s11104-017-3217-x (2017).

    Article 
    CAS 

    Google Scholar 

  • Swezy, D. & Agee, J. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. Forest Res. 21, 626–634. https://doi.org/10.1139/x91-086 (1991).

    Article 

    Google Scholar 

  • Smirnova, E., Bergeron, Y., Brais, S. & Granström, A. Postfire root distribution of Scots pine in relation to fire behaviour. Can. J. Forest Res. 38, 353–362. https://doi.org/10.1139/X07-127 (2008).

    Article 

    Google Scholar 

  • Vogt, K. A. et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219. https://doi.org/10.1007/BF00017088 (1996).

    Article 
    CAS 

    Google Scholar 

  • Dickinson, M. B. & Johnson, E. A. Fire effects on trees. In Forest Fires: Behavior and Ecological Effects (eds Johnson, E. A. & Miyanishi, K.) 477–525 (Academic Press, 2001).

    Chapter 

    Google Scholar 

  • Schimmel, J. & Granström, A. Fire severity and vegetation response in the boreal Swedish forest. Ecology 77, 1436–1450. https://doi.org/10.2307/2265541 (1996).

    Article 

    Google Scholar 

  • Conedera, M. et al. Characterizing alpine pyrogeography from fire statistics. Appl. Geogr. 98, 87–99. https://doi.org/10.1016/j.apgeog.2018.07.011 (2018).

    Article 

    Google Scholar 

  • Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974. https://doi.org/10.5194/acp-6-957-2006 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wastl, C. et al. Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agr. Forest Meteorol. 168, 15–25. https://doi.org/10.1016/j.agrformet.2012.08.011 (2013).

    Article 
    ADS 

    Google Scholar 

  • Schunk, C., Wastl, C., Leuchner, M., Schuster, C. & Menzel, A. Forest fire danger rating in complex topography—results from a case study in the Bavarian Alps in autumn 2011. Nat. Hazard. Earth Syst. 13, 2157–2167. https://doi.org/10.5194/nhess-13-2157-2013 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wastl, C., Schunk, C., Leuchner, M., Pezzatti, G. B. & Menzel, A. Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agr. Forest Meteorol. 162–163, 1–13. https://doi.org/10.1016/j.agrformet.2012.04.001 (2012).

    Article 
    ADS 

    Google Scholar 

  • Flannigan, M. D., Stocks, B. & Wotton, B. Climate change and forest fires. Sci. Total Environ. 262, 221–229. https://doi.org/10.1016/S0048-9697(00)00524-6 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Overpeck, J. T., Rind, D. & Goldberg, R. Climate-induced changes in forest disturbance and vegetation. Nature 343, 51–53. https://doi.org/10.1038/343051A0 (1990).

    Article 
    ADS 

    Google Scholar 

  • Moreno, J. M., Vazquez, A. & Vélez, R. Recent history of forest fires in Spain. In Large Forest Fires (ed. Moreno, J. M.) 159–185 (Backhuys, 1998).

    Google Scholar 

  • Marlon, J. R. et al. Wildfire responses to abrupt climate change in North America. P. Natl. Acad. Sci. USA 106, 2519–2524. https://doi.org/10.1073/pnas.0808212106 (2009).

    Article 
    ADS 

    Google Scholar 

  • Mooney, S. D. et al. Late quaternary fire regimes of Australasia. Quat. Sci. Rev. 30, 28–46. https://doi.org/10.1016/j.quascirev.2010.10.010 (2011).

    Article 
    ADS 

    Google Scholar 

  • Power, M. et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dynam. 30, 887–907. https://doi.org/10.1007/s00382-007-0334-x (2008).

    Article 
    ADS 

    Google Scholar 

  • Ascoli, D., Castagneri, D., Valsecchi, C., Conedera, M. & Bovio, G. Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecol. Eng. 54, 210–217. https://doi.org/10.1016/j.ecoleng.2013.01.032 (2013).

    Article 

    Google Scholar 

  • Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336. https://doi.org/10.1038/nature02300 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 108, 2047–2069. https://doi.org/10.1111/1365-2745.13403 (2020).

    Article 

    Google Scholar 

  • Lecina-Diaz, J., Martínez-Vilalta, J., Álvarez, A., Vayreda, J. & Retana, J. Assessing the risk of losing forest ecosystem services due to wildfires. Ecosystems 24, 1687–1701. https://doi.org/10.1007/s10021-021-00611-1 (2021).

    Article 

    Google Scholar 

  • Maron, M. et al. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 32, 240–248. https://doi.org/10.1016/j.tree.2016.12.011 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Montagnoli, A. et al. Editorial: Modulation of growth and development of tree roots in forest ecosystems. Front. Plant Sci. 13, 850163. https://doi.org/10.3389/fpls.2022.850163 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peters, R. Beech forests. Geobotany 24, 187 p (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997).

  • Ascoli, D., Vacchiano, G., Maringer, J., Bovio, G. & Conedera, M. The synchronicity of masting and intermediate severity fire effects favor beech recruitment. Forest Ecol. Manag. 353, 126–135. https://doi.org/10.1016/J.FORECO.2015.05.031 (2015).

    Article 

    Google Scholar 

  • Eissenstat, D. M., McCormack, M. L. & Du, Q. Global change and root lifespan. In Plant Roots: The Hidden Half (eds Eshel, A. & Beeckman, T.) 1–13 (CRC Press, 2013).

    Google Scholar 

  • Montagnoli, A. et al. Drought and fire stress influence seedling competition in oak forests: Fine-root dynamics as indicator of adaptation strategies to climate change. Reforesta 1, 86–105. https://doi.org/10.21750/REFOR.1.06.6 (2016).

    Article 

    Google Scholar 

  • Fratianni, S. & Acquaotta, F. The climate of Italy. In Landscapes and Landforms of Italy (eds Soldati, M. & Marchetti, M.) 29–38 (Springer, 2017). https://doi.org/10.1007/978-3-319-26194-2_4.

    Chapter 

    Google Scholar 

  • Montagnoli, A. et al. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: A rhizobox approach. Sci. Total Environ. 751, 141455. https://doi.org/10.1016/j.scitotenv.2020.141455 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Folador, L., Cislaghi, A., Vacchiano, G. & Masseroni, D. Integrating remote and in-situ data to assess the hydrological response of a post-fire watershed. Hydrology 8, 169. https://doi.org/10.3390/hydrology8040169 (2021).

    Article 

    Google Scholar 

  • Costantini, E. A. C. et al. Carta dei suoli d’Italia–Soil Map of Italy at 1:1,000,000 Scale. Consiglio per Ricerca e la Sperimentazione in Agricoltura, Ministero delle Politiche Agricole Alimentari e Forestali. https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy (2012).

  • Luino, F. et al. The role of soil type in triggering shallow landslides in the Alps (Lombardy, Northern Italy). Land 11, 1125. https://doi.org/10.3390/land11081125 (2022).

    Article 

    Google Scholar 

  • Beyer, F., Hertel, D. & Leuschner, C. Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition. Plant Soil 373, 143–156. https://doi.org/10.1007/s11104-013-1752-7 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hertel, D., Strecker, T., Müller-Haubold, H. & Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient—is optimal resource partitioning theory applicable to water-limited mature trees?. J. Ecol. 101, 1183–1200. https://doi.org/10.1111/1365-2745.12124 (2013).

    Article 

    Google Scholar 

  • Fairley, R. I. & Alexander, I. J. Methods of calculating fine root production in forests. In Ecological Interactions in Soil: Plants, Microbes, and Animals (eds Fitter, A. H. et al.) 37–42 (Blackwell Scientific, 1985).

    Google Scholar 

  • Yuan, Z. Y. & Chen, Y. H. Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach. Acta Oecol. 48, 54–61. https://doi.org/10.1016/j.actao.2013.01.009 (2013).

    Article 
    ADS 

    Google Scholar 

  • Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.x (2000).

    Article 

    Google Scholar 

  • Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442. https://doi.org/10.1080/11263500701626069 (2007).

    Article 

    Google Scholar 

  • Norby, R. J. & Jackson, R. B. Root dynamics and global change: Seeking an ecosystem perspective. New Phytol. 147, 3–12. https://doi.org/10.1046/j.1469-8137.2000.00676.x (2000).

    Article 
    CAS 

    Google Scholar 

  • Agbeshie, A. A., Abugre, S., Atta-Darkwa, T. & Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 33, 1419–1441. https://doi.org/10.1007/s11676-022-01475-4 (2022).

    Article 

    Google Scholar 

  • Steward, F. R., Peters, S. & Richon, J. B. A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities. Can. J. Forest Res. 20, 919–926. https://doi.org/10.1139/x90-124 (1990).

    Article 

    Google Scholar 

  • Freschet, G. et al. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 232, 973–1122. https://doi.org/10.1111/nph.17572.hal-03379708 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graça, J. Suberin: the biopolyester at the frontier of plants. Front. Chem. 3, 62. https://doi.org/10.3389/fchem.2015.00062 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bär, A., Michaletz, S. T. & Mayr, S. Fire effects on tree physiology. New Phytol. 223, 1728–1741. https://doi.org/10.1111/nph.15871 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Datta, R. To extinguish or not to extinguish: The role of forest fire in nature and soil resilience. J. King Saud Univ. Sci. 33, 101539 (2021).

    Article 

    Google Scholar 

  • Montagnoli, A., Terzaghi, M., Scippa, G. S. & Chiatante, D. Heterorhizy can lead to underestimation of fine-root production when using mesh-based techniques. Acta Oecol. 59, 84e90. https://doi.org/10.1016/j.actao.2014.06.004 (2014).

    Article 

    Google Scholar 

  • Hart, A. T., Merlin, M., Wiley, E. & Landhäusser, S. M. Splitting the difference: Heterogeneous soil moisture availability affects aboveground and belowground reserve and mass allocation in trembling aspen. Front. Plant Sci. 12, 654159. https://doi.org/10.3389/fpls.2021.654159 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujita, S., Noguchi, K. & Tange, T. Different waterlogging depths affect spatial distribution of fine root growth for Pinus thunbergia seedlings. Front. Plant Sci. 12, 614764. https://doi.org/10.3389/fpls.2021.614764 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, L. et al. Differential variation in non-structural carbohydrates in root branch orders of Fraxinus mandshurica Rupr. seedlings across different drought intensities and soil substrates. Front. Plant Sci. 12, 692715. https://doi.org/10.3389/fpls.2021.692715 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lihui, M., Xiaoli, L., Youke, W. & Jingui, Y. Effects of slope aspect and rainfall on belowground deep fine root traits and aboveground tree height. Front. Plant Sci. 12, 684468. https://doi.org/10.3389/fpls.2021.684468 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finér, L., Messier, C. & De Grandpré, L. Fine-root dynamics in mixed boreal conifer – broad-leafed forest stands at different successional stages after fire. Can. J. Forest Res. 27, 304–314. https://doi.org/10.1139/x96-170 (1997).

    Article 

    Google Scholar 

  • Makita, N., Pumpanen, J., Köster, K. & Berninger, F. Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant Soil 402, 303–3016. https://doi.org/10.1007/s11104-016-2801-9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Withington, J. M., Reich, P. B., Oleksyn, J. & Eissenstat, D. M. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 76, 381–397. https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 (2006).

    Article 

    Google Scholar 

  • Metcalfe, D. B. et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311, 189–199. https://doi.org/10.1007/s11104-008-9670-9 (2008).

    Article 
    CAS 

    Google Scholar 

  • Eissenstat, D. M. & Yanai, R. D. The ecology of root lifespan. Adv. Ecol. Res. 27, 1–62. https://doi.org/10.1016/S0065-2504(08)60005-7 (1997).

    Article 

    Google Scholar 

  • Johnson, L. C. & Matchett, J. R. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82, 3377–3389. https://doi.org/10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2 (2001).

    Article 

    Google Scholar 

  • Pellegrini, A. F. A., Hedin, L. O., Staver, A. C., Govender, N. & Henry, H. A. L. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285. https://doi.org/10.1890/14-1158.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildl. Fire 22, 368. https://doi.org/10.1071/WF10136 (2013).

    Article 
    CAS 

    Google Scholar 

  • Thompson, I., Mackey, B., McNulty, S., Mosseler, A. Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series No. 43, 67 p. (2009).

  • Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186. https://doi.org/10.1139/er-2015-0072 (2016).

    Article 

    Google Scholar 

  • Messier, C. et al. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 21. https://doi.org/10.1186/s40663-019-0166-2 (2019).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *