Baumgart, D. C. & Sandborn, W. J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 369(9573), 1641–1657 (2007).
Google Scholar
Baumgart, D. C. The diagnosis and treatment of Crohn’s disease and ulcerative colitis. Deutsches Aerzteblatt Online 106(8), 123–133 (2009).
Conrad, K., Roggenbuck, D. & Laass, M. W. Diagnosis and classification of ulcerative colitis. Autoimmun. Rev. 13(4–5), 463–466 (2014).
Google Scholar
Laass, M. W., Roggenbuck, D. & Conrad, K. Diagnosis and classification of Crohn’s disease. Autoimmun. Rev. 13(4), 467–471 (2014).
Google Scholar
Tontini, G. E. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J. Gastroenterol. 21(1), 21 (2015).
Google Scholar
Bernstein, C. N. et al. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis. 16(1), 112–124 (2010).
Google Scholar
Annese, V. et al. European evidence based consensus for endoscopy in inflammatory bowel disease. J. Crohn’s Colitis 7(12), 982–1018 (2013).
Google Scholar
Ott, S. J. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5), 685–693 (2004).
Google Scholar
Manichanh, C. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2), 205–211 (2006).
Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. 104(34), 13780–13785 (2007).
Google Scholar
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569(7758), 655–662 (2019).
Google Scholar
Gubatan, J. et al. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J. Gastroenterol. 27(17), 1920–1935 (2021).
Google Scholar
Meyer, P. et al. Industrial methodology for process verification in research (IMPROVER): Toward systems biology verification. Bioinformatics 28(9), 1193–1201 (2012).
Google Scholar
MEDIC. https://www.intervals.science/resources/sbv-improver/medic.
Belcastroa, V. et al. The sbv IMPROVER Systems Toxicology computational challenge: Identification of human and species-independent blood response markers as predictors of smoking exposure and cessation status. Comput. Toxicol. 5, 38–51 (2018).
Google Scholar
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Science Translational Medicine. 10(472), 8914 (2018).
Google Scholar
Parada Venegas, D., et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).
Google Scholar
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitziidefines dysbiosis in patients with ulcerative colitis. Gut 63(8), 1275–1283 (2013).
Google Scholar
Facchin, S., et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 32(10), e13914 (2020).
Google Scholar
Kang, S. et al. Dysbiosis of fecal microbiota in Crohnʼs disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16(12), 2034–2042 (2010).
Google Scholar
Zhang, L. et al. Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms. Front. Microbiol. 24, 13 (2022).
Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for clostridium difficile spores. J. Bacteriol. 190(7), 2505–2512 (2008).
Google Scholar
Xu, X., et al. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathogens 14, 26 (2022).
Google Scholar
Han, D. H., et al. Co-administration of Lactobacillus gasseri KBL697 and tumor necrosis factor-alpha inhibitor infliximab improves colitis in mice. Sci. Rep. 12(1), 9640 (2022).
Google Scholar
Bjarnason, I., Sission, G. & Hayee, B. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology 27(3), 465–473 (2019).
Google Scholar
Baldelli, V., Scaldaferri, F., Putignani, L. & Del Chierico, F. The role of enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 9(4), 697 (2021).
Google Scholar
Garrett, W. S. et al. Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8(3), 292–300 (2010).
Google Scholar
Ruby, T., McLaughlin, L., Gopinath, S. & Monack, D. Salmonella’s long-term relationship with its host. FEMS Microbiol. Rev. 36(3), 600–615 (2012).
Google Scholar
Geddes, K. et al. Nod1 and Nod2 regulation of inflammation in the salmonella colitis model. Infect. Immun. 78(12), 5107–5115 (2010).
Google Scholar
Deng, Q. & Barbieri, J. T. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu. Rev. Microbiol. 62(1), 271–288 (2008).
Google Scholar
Mahendran, V. et al. Prevalence of campylobacter species in adult Crohn’s disease and the preferential colonization sites of campylobacter species in the human intestine. Heimesaat MM, editor. PLoS ONE 6(9), e25417 (2011).
Google Scholar
Sun, D. et al. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut 70(4), 666–676 (2020).
Google Scholar
Jangid, A. et al. Association of colitis with gut-microbiota dysbiosis in clathrin adapter AP-1B knockout mice. Blachier F, editor. PLoS ONE 15(3), e0228358 (2020).
Google Scholar
Stojanov, S., Berlec, A. & Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8(11), 1715 (2020).
Google Scholar
Alam, M. T., et al. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens 12, 1 (2020).
Google Scholar
Eckburg, P. B. Diversity of the human intestinal microbial flora. Science 308(5728), 1635–1638 (2005).
Google Scholar
Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25(5), 668-680.e7 (2019).
Google Scholar
Waidmann, M. et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 125(1), 162–177 (2003).
Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9(5), 313–323 (2009).
Google Scholar
Rabizadeh, S. et al. Enterotoxigenic Bacteroides fragilis: A potential instigator of colitis. Inflamm. Bowel Dis. 13(12), 1475–1483 (2007).
Google Scholar
Yao, S., Zhao, Z., Wang, W. & Liu, X. Bifidobacterium longum: Protection against inflammatory bowel disease. Wang K, editor. J. Immunol. Res. 2021, 1–11 (2021).
Google Scholar
Pompei, A. et al. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol. 73(1), 179–185 (2006).
Google Scholar
Zhao, X. et al. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 20(9), 765 (2018).
Google Scholar
Clavel, T. et al. Intestinal microbiota in metabolic diseases. Gut Microbes. 5(4), 544–551 (2014).
Google Scholar
Mottawea, W., et al. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 7(1), 13419 (2016).
Google Scholar
Edwards, J.-A. et al. Role of regenerating islet-derived proteins in inflammatory bowel disease. World J. Gastroenterol. 26(21), 2702–2714 (2020).
Google Scholar
Dharmani, P., Strauss, J., Ambrose, C., Allen-Vercoe, E. & Chadee, K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Bäumler AJ, editor. Infect. Immun. 79(7), 2597–2607 (2011).
Google Scholar
Santoru, M. L., et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 7(1), 9523 (2017).
Google Scholar
Chen, T. et al. Akkermansia muciniphila protects against psychological disorder-induced gut microbiota-mediated colonic mucosal barrier damage and aggravation of colitis. Front. Cell. Infect. Microbiol. 14, 11 (2021).
Qian, K. et al. A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota. Food Funct. 13, 2216–2227 (2022).
Google Scholar
Lo Sasso, G. et al. Inflammatory bowel disease-associated changes in the gut: Focus on Kazan patients. Inflamm. Bowel Dis. 27(3), 418–433 (2020).
Google Scholar
Yi, S. K. M., Steyvers, M., Lee, M. D. & Dry, M. J. The wisdom of the crowd in combinatorial problems. Cogn. Sci. 36(3), 452–470 (2012).
Google Scholar
Good, B. M. & Su, A. I. Crowdsourcing for bioinformatics. Bioinformatics 29(16), 1925–1933 (2013).
Google Scholar
Talikka, M. et al. Novel approaches to develop community-built biological network models for potential drug discovery. Expert Opin. Drug Discov. 12(8), 849–857 (2017).
Google Scholar
Sparks, R., Lau, W. W. & Tsang, J. S. Expanding the immunology toolbox: Embracing public-data reuse and crowdsourcing. Immunity 45(6), 1191–1204 (2016).
Google Scholar
Shah, N., Levy, A. E., Moriates, C. & Arora, V. M. Wisdom of the crowd. Acad. Med. 90(5), 624–628 (2015).
Google Scholar
Linde, J., Schulze, S., Henke, S. G. & Guthke, R. Data- and knowledge-based modeling of gene regulatory networks: An update. EXCLI J. 2(14), 346–378 (2015).
Bakir-Gungor, B. et al. Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods. PeerJ 25(10), e13205 (2022).
Google Scholar
LaPierre, N., Ju, C.J.-T., Zhou, G. & Wang, W. MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods 166, 74–82 (2019).
Google Scholar
Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights. PLoS Comput. Biol. 12(7), e1004977 (2016).
Google Scholar
Eck, A. et al. Robust microbiota-based diagnostics for inflammatory bowel disease. McAdam AJ, editor. J. Clin. Microbiol. 55(6), 1720–1732 (2017).
Google Scholar
Mirsepasi-Lauridsen, H. C. et al. Substantial intestinal microbiota differences between patients with ulcerative colitis from Ghana and Denmark. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2022.832500 (2022).
Google Scholar
Mirsepasi-Lauridsen, H. C. et al. Disease-specific enteric microbiome dysbiosis in inflammatory bowel disease. Front. Med. 20, 5 (2018).
Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012).
Google Scholar
Stolovitzky, G., Prill, R. J. & Califano, A. Lessons from the DREAM2 challenges. Ann. N. Y. Acad. Sci. 1158(1), 159–195 (2009).
Google Scholar
Papin, J. A. & Mac, G. F. Wisdom of crowds in computational biology. PLoS Comput. Biol. 15(5), e1007032 (2019).
Google Scholar
Buisson, A. et al. Comparative Acceptability and Perceived Clinical Utility of Monitoring Tools. Inflamm. Bowel Dis. 23(8), 1425–1433 (2017).
Google Scholar
Kalla, R. et al. Patients’ perceptions of faecal calprotectin testing in inflammatory bowel disease: Results from a prospective multicentre patient-based survey*. Scand. J. Gastroenterol. 53(12), 1437–1442 (2018).
Google Scholar
Maréchal, C. et al. Compliance with the faecal calprotectin test in patients with inflammatory bowel disease. United Eur. Gastroenterol. J. 5(5), 702–707 (2017).
Google Scholar
Khakoo, N. S., et al. Patient adherence to fecal calprotectin testing is low compared to other commonly ordered tests in patients with inflammatory bowel disease. Crohn’s Colitis 360 3(3), otab028 (2021).
Google Scholar
He, Q., et al. Two distinct metacommunities characterize the gut microbiota in Crohn’s disease patients. GigaScience 6(7), 1–11 (2017).
Google Scholar
Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3(3), 337–346 (2018).
Google Scholar
Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Birol I, editor. Bioinformatics 34(18), 3094–3100 (2018).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009).
Google Scholar
BBMap. SourceForge. http://sourceforge.net/projects/bbmap.
Andrews, S. Babraham bioinformatics—FastQC A quality control tool for high throughput sequence data (2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19), 3047–3048 (2016).
Google Scholar
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20(1), 257 (2019).
Google Scholar
Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2(3), e104 (2017).
Google Scholar
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44(D1), D733–D745 (2015).
Google Scholar
McIver, L. J. et al. bioBakery: A meta’omic analysis environment. Hancock J, editor. Bioinformatics 34(7), 1235–1237 (2017).
Google Scholar
Kuhn, M., et al. caret: Classification and Regression Training. R-Packages. 2020. https://cran.r-project.org/web/packages/caret/index.html.