De Yoreo, JJ, Burnham, AK & Whitman, PK Development KH2P.O.Four and KD2P.O.Four The world’s highest output laser crystal. Inside and outside meters. Rev. 47113–152 (2002).
Nicogothian, DN Nonlinear Optical Crystals: A Complete Investigation First Edition. (Springer, 2005).
Google Scholar
Eimerl, D. Electro-optical, linear, and nonlinear optical properties of KDP and its isomorphs. ferroelectric 7295–139 (1987).
Danson, CN and others. Petawatt and exawatt class lasers worldwide. High power laser science.English 7e54 (2019).
Rashkovic, LN Single crystals of the KDP family First Edition. (CRC Press, 1991).
Google Scholar
Fuchs, BA, Hed, PP & Baker, PC Precision diamond turning of KDP crystals. application options. twenty five1733–1735 (1986).
Fuchs, BA polished KDP and other soft water soluble crystals. application options. 181125–1125 (1979).
Menapace, JA, Ehrmann, PR & Bickel, RC Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: development of nonaqueous fluids, optical finishing, and laser damage performance at 1064 nm and 532 nm. minutes spy 7504750414 (2009).
Jacobs, SD Manipulation of mechanics and chemistry in precision optical finishing. Science. technology. advantage meter. 8153–157 (2007).
Chen, S., Li, S., Peng, X., Hu, H. & Tie, G. Study of polishing process to control iron contamination on magnetorheologically finished KDP crystal surfaces. application options. 541478–1484 (2015).
pen, X. and others. New magneto-rheological structure of KDP crystals. jaw. option. Rhett. 9102201–102205 (2011).
Wang, X., Gao, H., Chen, Y. & Guo, D. Aqueous solution method for removing micro-waviness caused by SPDT process of KDP crystals. J. Adv. manufacturer technology. 851347–1360 (2016).
Chen, Y., Gao, H., Wang, X., Guo, D. & Liu, Z. Laser-induced damage of potassium dihydrogen phosphate (KDP) optical crystals machined by water-soluble ultra-precision polishing. material 11419 (2018).
Li, F., Xie, X., Tie, G., Hu, H. & Zhou, L. Fabrication process of potassium dihydrogen phosphate crystals using ion beam fabrication technology. application options. 567130–7137 (2017).
Xiao, Q., Shi, F., Song, J. & Li, F. Effect of ion beam on laser damage properties of KDP crystals. minutes spy 10339103391Y (2017).
Namba, Y. & Katagiri, M. Ultra-precision grinding of potassium dihydrogen phosphate crystals to obtain optical surfaces (abstract only). minutes spy 3578 (1999).
Zhang, Y., Fan, Q., Gao, W., Wang, C. & Ji, F. Novel abrasive-free jet polishing of bulk monocrystalline KDP using low-viscosity microemulsions. Science.manager 128346 (2022).
Gao, W. and others. A new abrasive-free jet polishing mechanism for potassium dihydrogen phosphate (KDP) crystals. option. m.limited express 81012–1024 (2018).
Fähnle, OW, van Brug, H. & Frankena, HJ Fluid Jet Polishing of Optical Surfaces. application options. 376771–6773 (1998).
Booij, S., van Brug, H., Braat, J. & Faehnle, OW Nanometer Deep Forming by Fluid Jet Polishing. option.English 411926–1931 (2002).
Cao, Z.-C. & Cheung, CF Theoretical modeling and analysis of material removal properties in fluid jet polishing. Inside and outside J. Mech. Science. 89158–166 (2014).
Urban, ND, Kafka, KRP, Marshall, KL & Demos, SG Laser-induced damage properties of fused silica surfaces polished to various depths using fluid jet polishing. option.English 61071604 (2022).
Lv, L. and others. A study on laser-induced damage resistance of quartz glass optics by fluid jet polishing. application options. 552252–2258 (2016).
Booey, SM Fluid Jet Polishing: Polishing and Limitations of New Manufacturing TechniquesPhD thesis, Delft University of Technology (2004).
ISO 21254-1:2011. Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles.
Schrameyer, S., Jupé, M., Jensen, L. & Ristau, D. Algorithm for cumulative damage probability calculation in S-on-1 laser damage testing. minutes spy 888588851J (2013).
Burnham, A. and others. Low temperature growth of DKDP to improve laser-induced damage resistance at 350 nm. minutes spy 4347373–382 (2001).
Negres, RA, Zaitseva, NP, DeMange, P. & Demos, SG Rapid laser damage profiling of KDxH2−xPO4 on crystal growth parameters. option. Rhett. 313110–3112 (2006).
Fang, H., Guo, P. & Yu, J. Surface roughness and material removal in fluid jet polishing. application options. 454012–4019 (2006).
Bifano, TG, Dow, TA & Scattergood, RO Ductile Regime Grinding: A new technology for machining brittle materials. ASME J. Eng. India. 113184–189 (1991).
Fang, T. & Lambropoulos, JC Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). crowded. Serum.society 85174–178 (2002).
Guin, CH, Katrich, MD, Savinkov, AI & Shaskolskaya, MP Plastic strain and dislocation structure in KDP group crystals. Chris. technology. 15479–488 (1980).
Owczarek, I. & Sangwal, K. Selective etching of rough (001) planes of KH2PO4 crystals. J. Mater. Science. Rhett. 9440–442 (1990).
Smorski, L. and others. Orienting liquid inclusions in KDP crystals. J.Crys.growth 169741–746 (1996).
Demos, SG, Staggs, M. & Radousky, HB Bulk Defect Formation in KH2P.O.Four Crystals investigated using fluorescence microscopy. Physics. Revision B 67224102 (2003).
Peng, J., Zhang, LC & Lu, XC Elastic-plastic deformation of KDP crystals under nanoindentation. m. Science.forum 773–774705–711 (2014).
Google Scholar
Kucheyev, SO, Siekhaus, WJ, Land, TA & Demos, SG Mechanical response of KD 2xH 2(1–x)PO 4 crystals during nanoindentation. application physics. Rhett. 842274–2276 (2004).
Borc, J., Sangwal, K., Pritula, I. & Dolzhenkova, E. Investigation of pop-in events and indentation size effects on (001) and (100) planes of KDP crystals by nanoindentation deformation. m. Science.English 7081–10 (2017).
Bercegol, H. What is Laser Conditioning: A Review Focusing on Dielectric Multilayers. minutes spy 3578421–426 (1999).
Runkel, M., DeYoreo, JJ, Sell, WD & Milam, D. Laser conditioning studies of KDP in optical science lasers using large area beams. minutes spy 324451–63 (1998).
Negres, RA, DeMange, P. & Demos, SG Investigation of Laser Annealing Parameters for Optimal Laser Damage Performance in Deuterated Potassium Dihydrogen Phosphate. option. Rhett. 302766–2768 (2005).