Performance Characterization of Potassium Dihydrogen Phosphate Freeform Finished Surfaces Using Fluid Jet Polishing with Non-Aqueous Slurries

Sub Levels


  • De Yoreo, JJ, Burnham, AK & Whitman, PK Development KH2P.O.Four and KD2P.O.Four The world’s highest output laser crystal. Inside and outside meters. Rev. 47113–152 (2002).

    Articles Google Scholar

  • Nicogothian, DN Nonlinear Optical Crystals: A Complete Investigation First Edition. (Springer, 2005).

    Google Scholar

  • Eimerl, D. Electro-optical, linear, and nonlinear optical properties of KDP and its isomorphs. ferroelectric 7295–139 (1987).

    Articles ADS CAS Google Scholar

  • Danson, CN and others. Petawatt and exawatt class lasers worldwide. High power laser science.English 7e54 (2019).

    Papers CAS Google Scholar

  • Rashkovic, LN Single crystals of the KDP family First Edition. (CRC Press, 1991).

    Google Scholar

  • Fuchs, BA, Hed, PP & Baker, PC Precision diamond turning of KDP crystals. application options. twenty five1733–1735 (1986).

    Articles ADS CAS PubMed Google Scholar

  • Fuchs, BA polished KDP and other soft water soluble crystals. application options. 181125–1125 (1979).

    Articles ADS CAS PubMed Google Scholar

  • Menapace, JA, Ehrmann, PR & Bickel, RC Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: development of nonaqueous fluids, optical finishing, and laser damage performance at 1064 nm and 532 nm. minutes spy 7504750414 (2009).

    Articles Google Scholar

  • Jacobs, SD Manipulation of mechanics and chemistry in precision optical finishing. Science. technology. advantage meter. 8153–157 (2007).

    Papers CAS Google Scholar

  • Chen, S., Li, S., Peng, X., Hu, H. & Tie, G. Study of polishing process to control iron contamination on magnetorheologically finished KDP crystal surfaces. application options. 541478–1484 (2015).

    Articles ADS CAS PubMed Google Scholar

  • pen, X. and others. New magneto-rheological structure of KDP crystals. jaw. option. Rhett. 9102201–102205 (2011).

    Articles ADS Google Scholar

  • Wang, X., Gao, H., Chen, Y. & Guo, D. Aqueous solution method for removing micro-waviness caused by SPDT process of KDP crystals. J. Adv. manufacturer technology. 851347–1360 (2016).

    Articles Google Scholar

  • Chen, Y., Gao, H., Wang, X., Guo, D. & Liu, Z. Laser-induced damage of potassium dihydrogen phosphate (KDP) optical crystals machined by water-soluble ultra-precision polishing. material 11419 (2018).

    Articles ADS PubMed PubMed Central Google Scholar

  • Li, F., Xie, X., Tie, G., Hu, H. & Zhou, L. Fabrication process of potassium dihydrogen phosphate crystals using ion beam fabrication technology. application options. 567130–7137 (2017).

    Articles ADS CAS PubMed Google Scholar

  • Xiao, Q., Shi, F., Song, J. & Li, F. Effect of ion beam on laser damage properties of KDP crystals. minutes spy 10339103391Y (2017).

    Articles Google Scholar

  • Namba, Y. & Katagiri, M. Ultra-precision grinding of potassium dihydrogen phosphate crystals to obtain optical surfaces (abstract only). minutes spy 3578 (1999).

  • Zhang, Y., Fan, Q., Gao, W., Wang, C. & Ji, F. Novel abrasive-free jet polishing of bulk monocrystalline KDP using low-viscosity microemulsions. Science.manager 128346 (2022).

    Articles ADS PubMed PubMed Central Google Scholar

  • Gao, W. and others. A new abrasive-free jet polishing mechanism for potassium dihydrogen phosphate (KDP) crystals. option. m.limited express 81012–1024 (2018).

    Articles ADS Google Scholar

  • Fähnle, OW, van Brug, H. & Frankena, HJ Fluid Jet Polishing of Optical Surfaces. application options. 376771–6773 (1998).

    Articles ADS PubMed Google Scholar

  • Booij, S., van Brug, H., Braat, J. & Faehnle, OW Nanometer Deep Forming by Fluid Jet Polishing. option.English 411926–1931 (2002).

    Articles ADS Google Scholar

  • Cao, Z.-C. & Cheung, CF Theoretical modeling and analysis of material removal properties in fluid jet polishing. Inside and outside J. Mech. Science. 89158–166 (2014).

    Articles Google Scholar

  • Urban, ND, Kafka, KRP, Marshall, KL & Demos, SG Laser-induced damage properties of fused silica surfaces polished to various depths using fluid jet polishing. option.English 61071604 (2022).

    Articles ADS CAS Google Scholar

  • Lv, L. and others. A study on laser-induced damage resistance of quartz glass optics by fluid jet polishing. application options. 552252–2258 (2016).

    Articles ADS CAS PubMed Google Scholar

  • Booey, SM Fluid Jet Polishing: Polishing and Limitations of New Manufacturing TechniquesPhD thesis, Delft University of Technology (2004).

  • ISO 21254-1:2011. Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles.

  • Schrameyer, S., Jupé, M., Jensen, L. & Ristau, D. Algorithm for cumulative damage probability calculation in S-on-1 laser damage testing. minutes spy 888588851J (2013).

    Articles ADS Google Scholar

  • Burnham, A. and others. Low temperature growth of DKDP to improve laser-induced damage resistance at 350 nm. minutes spy 4347373–382 (2001).

    Articles ADS Google Scholar

  • Negres, RA, Zaitseva, NP, DeMange, P. & Demos, SG Rapid laser damage profiling of KDxH2−xPO4 on crystal growth parameters. option. Rhett. 313110–3112 (2006).

    Articles ADS CAS PubMed Google Scholar

  • Fang, H., Guo, P. & Yu, J. Surface roughness and material removal in fluid jet polishing. application options. 454012–4019 (2006).

    Articles ADS CAS PubMed Google Scholar

  • Bifano, TG, Dow, TA & Scattergood, RO Ductile Regime Grinding: A new technology for machining brittle materials. ASME J. Eng. India. 113184–189 (1991).

    Articles Google Scholar

  • Fang, T. & Lambropoulos, JC Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). crowded. Serum.society 85174–178 (2002).

    Papers CAS Google Scholar

  • Guin, CH, Katrich, MD, Savinkov, AI & Shaskolskaya, MP Plastic strain and dislocation structure in KDP group crystals. Chris. technology. 15479–488 (1980).

    Papers CAS Google Scholar

  • Owczarek, I. & Sangwal, K. Selective etching of rough (001) planes of KH2PO4 crystals. J. Mater. Science. Rhett. 9440–442 (1990).

    Papers CAS Google Scholar

  • Smorski, L. and others. Orienting liquid inclusions in KDP crystals. J.Crys.growth 169741–746 (1996).

    Articles ADS CAS Google Scholar

  • Demos, SG, Staggs, M. & Radousky, HB Bulk Defect Formation in KH2P.O.Four Crystals investigated using fluorescence microscopy. Physics. Revision B 67224102 (2003).

    Articles ADS Google Scholar

  • Peng, J., Zhang, LC & Lu, XC Elastic-plastic deformation of KDP crystals under nanoindentation. m. Science.forum 773–774705–711 (2014).

    Google Scholar

  • Kucheyev, SO, Siekhaus, WJ, Land, TA & Demos, SG Mechanical response of KD 2xH 2(1–x)PO 4 crystals during nanoindentation. application physics. Rhett. 842274–2276 (2004).

    Articles ADS CAS Google Scholar

  • Borc, J., Sangwal, K., Pritula, I. & Dolzhenkova, E. Investigation of pop-in events and indentation size effects on (001) and (100) planes of KDP crystals by nanoindentation deformation. m. Science.English 7081–10 (2017).

    Papers CAS Google Scholar

  • Bercegol, H. What is Laser Conditioning: A Review Focusing on Dielectric Multilayers. minutes spy 3578421–426 (1999).

    Articles ADS CAS Google Scholar

  • Runkel, M., DeYoreo, JJ, Sell, WD & Milam, D. Laser conditioning studies of KDP in optical science lasers using large area beams. minutes spy 324451–63 (1998).

    Articles ADS CAS Google Scholar

  • Negres, RA, DeMange, P. & Demos, SG Investigation of Laser Annealing Parameters for Optimal Laser Damage Performance in Deuterated Potassium Dihydrogen Phosphate. option. Rhett. 302766–2768 (2005).

    Articles ADS CAS PubMed Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *