Optoelectronic performance of indium tin oxide thin films structured by sub-picosecond direct laser interference patterning

Sub Levels


  • Lewis, B. G. & Paine, D. C. Applications and processing of transparent conducting oxides. MRS Bull. 25, 22–27 (2000).

    CAS 

    Google Scholar 

  • Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Farag, A. A. A. et al. Structural investigation and optical enhancement characterization of nanostructured Ga-doped @CdO/FTO films for photodiode applications. Opt. Mater. 110, 110458 (2020).

    CAS 

    Google Scholar 

  • Saikia, D. & Sarma, R. Improved performance of organic light-emitting diode with vanadium pentoxide layer on the FTO surface. Pramana 88, 83 (2017).

    ADS 

    Google Scholar 

  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, J. et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Science Bull. 62, 1173–1176 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Sai, H., Matsui, T., Kumagai, H. & Matsubara, K. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Appl. Phys. Express 11, 022301 (2018).

    ADS 

    Google Scholar 

  • Bernal-Correa, R., Morales-Acevedo, A., Montes-Monsalve, J. & Pulzara-Mora, A. Design of the TCO (ZnO:Al) thickness for glass/TCO/CdS/CIGS/Mo solar cells. J. Phys. D: Appl. Phys. 49, 125601 (2016).

    Google Scholar 

  • Yang, Z. et al. Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 4419–4427 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, Z., Zhang, J. & Zhao, Y. Effect of textured electrodes with light-trapping on performance of polymer solar cells. J. Appl. Phys. 111, 104516 (2012).

    ADS 

    Google Scholar 

  • Chen, Z. et al. Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 29, 13836–13842 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Toušková, J., Kovanda, J., Dobiášová, L., Pařízek, V. & Kielar, P. Sputtered indium-tin oxide substrates for CdS-CdTe solar cells. Sol. Energy Mater. Sol. Cells 37, 357–365 (1995).

    Google Scholar 

  • Djurišić, A. B., Kwong, C. Y., Chui, P. C. & Chan, W. K. Indium-tin-oxide surface treatments: Influence on the performance of CuPc/C60 solar cells. J. Appl. Phys. 93, 5472–5479 (2003).

    ADS 

    Google Scholar 

  • Gwamuri, J. et al. A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices. Sol. Energy Mater. Sol. Cells 149, 250–257 (2016).

    CAS 

    Google Scholar 

  • Pandey, M. et al. Dependence of ITO-coated flexible substrates in the performance and bending durability of perovskite solar cells. Adv. Eng. Mater. 21, 1900288 (2019).

    Google Scholar 

  • Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    ADS 

    Google Scholar 

  • Isiyaku, A. K., Ali, A. H. & Nayan, N. Effects of laser radiation on the optical and electrical properties of ITO thin films deposited by RF sputtering. Univers. J. Electr. Electron. Eng. 6, 1–6 (2019).

    Google Scholar 

  • Huang, Y. et al. Hexagonal-tiled indium tin oxide electrodes to enhance light trapping in perovskite solar cells. ACS Appl. Nano Mater. 1, 6159–6167 (2018).

    CAS 

    Google Scholar 

  • Park, T., Ha, J. & Kim, D. Laser processing of indium tin oxide thin film to enhance electrical conductivity and flexibility. Thin Solid Films 658, 38–45 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Kim, H. J. et al. Chemical and structural analysis of low-temperature excimer-laser annealing in indium-tin oxide sol-gel films. Curr. Appl. Phys. 19, 168–173 (2019).

    ADS 

    Google Scholar 

  • Jiang, Q. et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. OES 2, 220002. https://doi.org/10.29026/oes.2023.220002 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, P., Wang, W., Pan, A., Xiang, Y. & Wang, D. Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser. Opt. Laser Technol. 106, 259–264 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Mulko, L., Soldera, M. & Lasagni, A. F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: A review. Nanophotonics 11, 203–240 (2021).

    Google Scholar 

  • Berger, J. et al. Ultraviolet laser interference patterning of hydroxyapatite surfaces. Appl. Surf. Sci. 257, 3081–3087 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Lasagni, A. F. Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns. Adv. Opt. Technol. 6, 265–275 (2017).

    ADS 

    Google Scholar 

  • Müller, D. W. et al. Multi-pulse agglomeration effects on ultrashort pulsed direct laser interference patterning of copper. Appl. Surf. Sci. 611, 155538. https://doi.org/10.1016/j.apsusc.2022.155538 (2022).

    Article 
    CAS 

    Google Scholar 

  • Eckhardt, S., Sachse, C. & Lasagni, A. F. Light management in transparent conducting oxides by direct fabrication of periodic surface arrays. Phys. Procedia 41, 552–557 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Ring, S. et al. Light trapping for a-Si:H/µc-Si: H tandem solar cells using direct pulsed laser interference texturing. Phys. Status Solidi RRL 9, 36–40 (2015).

    CAS 

    Google Scholar 

  • Nakamura, D. et al. Growth of periodic ZnO nano-crystals on buffer layer patterned by interference laser irradiation. in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII vol. 8607 12–18 (SPIE, 2013).

  • Parellada-Monreal, L. et al. Study of sputtered ZnO modified by direct laser interference patterning: Structural characterization and temperature simulation. Appl. Surf. Sci. 441, 331–340 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Charipar, N., Auyeung, R. C. Y., Kim, H., Charipar, K. & Piqué, A. Hierarchical laser patterning of indium tin oxide thin films. Opt. Mater. Express 9, 3035–3045 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Pissadakis, S., Reekie, L., Zervas, M. N. & Wilkinson, J. S. Excimer laser inscribed submicron period relief gratings in InOx films and overlaid waveguides. J. Appl. Phys. 95, 1634–1641 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Fu, Z., Wu, B., Gao, Y., Zhou, Y. & Yu, C. Experimental study of infrared nanosecond laser ablation of silicon: The multi-pulse enhancement effect. Appl. Surf. Sci. 256, 2092–2096 (2010).

    ADS 
    CAS 

    Google Scholar 

  • McCann, R. et al. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation. Appl. Surf. Sci. 387, 603–608 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Tao, S., Wu, B., Zhou, Y. & Gao, Y. Thermal modeling and experimental study of infrared nanosecond laser ablation of silicon. J. Appl. Phys. 106, 123507 (2009).

    ADS 

    Google Scholar 

  • Soldera, M. et al. Toward high-throughput texturing of polymer foils for enhanced light trapping in flexible perovskite solar cells using roll-to-roll hot embossing. Adv. Eng. Mater. 22, 1901217 (2020).

    CAS 

    Google Scholar 

  • Heffner, H., Soldera, M. & Lasagni, A. F. Optical enhancement of fluorine-doped tin oxide thin films using infrared picosecond direct laser interference patterning. Adv. Eng. Mater. 24, 2200266 (2022).

    CAS 

    Google Scholar 

  • Zhang, F. et al. High-performance birefringence of periodic nanostructures in FTO thin film fabricated by IR-UV femtosecond laser. Front. Phys. 10 (2022).

  • Heffner, H. et al. Effects of sub-picosecond direct laser interference patterning on the optoelectronic properties of fluorine-doped tin oxide thin films. J. Mater. Chem. C 10, 17954–17964 (2022).

    CAS 

    Google Scholar 

  • Fox, T. & Mücklich, F. Development and validation of a calculation routine for the precise determination of pulse overlap and accumulated fluence in pulsed laser surface treatment. Adv. Eng. Mater. 25, 2201021 (2023).

    Google Scholar 

  • Rank, A., Lang, V. & Lasagni, A. F. High-speed roll-to-roll hot embossing of micrometer and sub micrometer structures using seamless direct laser interference patterning treated sleeves. Adv. Eng. Mater. 19, 1700201 (2017).

    Google Scholar 

  • Nečas, D. & Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    ADS 

    Google Scholar 

  • Swartzendruber, L. J. & Standards, U. S. N. B. of. Correction Factor Tables for Four-Point Probe Resistivity Measurements on Thin, Circular Semiconductor Samples. (U.S. Department of Commerce, National Bureau of Standards, 1964).

  • Kiang, Y. C. & Lang, R. W. Measuring focused Gaussian beam spot sizes: A practical method. Appl. Opt. AO 22, 1296–1297 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Kim, H.-Y., Yoon, J.-W., Choi, W.-S., Kim, K.-R. & Cho, S.-H. Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser. Opt. Lasers Eng. 84, 44–50 (2016).

    Google Scholar 

  • Kim, H.-Y. et al. Morphologies of femtosecond laser ablation of ITO thin films using Gaussian or quasi-flat top beams for OLED repair. Appl. Phys. A 124, 123 (2018).

    ADS 

    Google Scholar 

  • Park, M. et al. Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application. Opt. Lasers Eng. 44, 138–146 (2006).

    Google Scholar 

  • Račiukaitis, G., Brikas, M., Gedvilas, M. & Rakickas, T. Patterning of indium-tin oxide on glass with picosecond lasers. Appl. Surf. Sci. 253, 6570–6574 (2007).

    ADS 

    Google Scholar 

  • Choi, H. W., Farson, D. F., Bovatsek, J., Arai, A. & Ashkenasi, D. Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation. Appl. Opt. 46, 5792–5799 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bian, Q., Shen, X., Chen, S., Chang, Z. & Lei, S. Femtosecond laser ablation of indium tin oxide (ITO) glass for fabrication of thin film solar cells. ICALEO 2010, 1190–1198 (2010).

    Google Scholar 

  • Risch, A. & Hellmann, R. Picosecond laser patterning of ITO thin films. Phys. Procedia 12, 133–140 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Bian, Q., Yu, X., Zhao, B., Chang, Z. & Lei, S. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells. Opt. Laser Technol. 45, 395–401 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Krause, S., Miclea, P. T., Steudel, F., Schweizer, S. & Seifert, G. Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation. EPJ Photovolt. 4, 40601 (2013).

    ADS 

    Google Scholar 

  • Rung, S., Christiansen, A. & Hellmann, R. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films. Appl. Surf. Sci. 305, 347–351 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Cheng, C. W., Lee, I. M. & Chen, J. S. Femtosecond laser processing of indium-tin-oxide thin films. Opt. Lasers Eng. 69, 1–6 (2015).

    CAS 

    Google Scholar 

  • McDonnell, C. et al. Laser patterning of very thin indium tin oxide thin films on PET substrates. Appl. Surf. Sci. 359, 567–575 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Yoo, J.-H., Lange, A., Bude, J. & Elhadj, S. Optical and electrical properties of indium tin oxide films near their laser damage threshold. Opt. Mater. Express 7, 817–826 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Liao, J. et al. Laser direct patterning induced the tunable optical properties of indium tin oxide micro-hole arrays films. Curr. Appl. Phys. 36, 171–175 (2022).

    ADS 

    Google Scholar 

  • Byskov-Nielsen, J., Savolainen, J.-M., Christensen, M. S. & Balling, P. Ultra-short pulse laser ablation of metals: Threshold fluence, incubation coefficient and ablation rates. Appl. Phys. A 101, 97–101 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Heffner, H., Soldera, M., Ränke, F. & Lasagni, A. F. Surface modification of fluorine-doped tin oxide thin films using femtosecond direct laser interference patterning: A study of the optoelectronic performance. Adv. Eng. Mater. 25, 2201810. https://doi.org/10.1002/adem.202201810 (2023).

    Article 
    CAS 

    Google Scholar 

  • Krause, S., Miclea, P.-T., Steudel, F., Schweizer, S. & Seifert, G. Few micrometers wide, perfectly isolating scribes in transparent conductive oxide layers prepared by femtosecond laser processing. J. Renew. Sustain. Energy 6, 011402 (2014).

    Google Scholar 

  • Serkov, A. A., Snelling, H. V., Heusing, S. & Amaral, T. M. Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics. Sci. Rep. 9, 1773 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoonderbeek, A., Schütz, V., Haupt, O. & Stute, U. Laser processing of thin films for photovoltaic applications. J. Laser Micro Nanoeng. 5, 248–255 (2010).

    CAS 

    Google Scholar 

  • Bonse, J., Höhm, S., Kirner, S. V., Rosenfeld, A. & Krüger, J. Laser-induced periodic surface structures: A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).

    Google Scholar 

  • Ashida, T. et al. Thermal transport properties of polycrystalline tin-doped indium oxide films. J. Appl. Phys. 105, 073709 (2009).

    ADS 

    Google Scholar 

  • Rung, S., Schwarz, S., Götzendorfer, B., Esen, C. & Hellmann, R. Time dependence of wetting behavior upon applying hierarchic nano-micro periodic surface structures on brass using ultra short laser pulses. Appl. Sci. 8, 700 (2018).

    Google Scholar 

  • Alamri, S. et al. On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation. Materials 12, 1018 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bánhegyi, B., Péter, L., Dombi, P. & Pápa, Z. Femtosecond LIPSS on indium-tin-oxide thin films at IR wavelengths. Appl. Opt. 61, 386–391 (2022).

    ADS 
    PubMed 

    Google Scholar 

  • Huang, M., Zhao, F., Cheng, Y., Xu, N. & Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, F., Vallée, R. & Chin, S. L. Mechanism of nanograting formation on the surface of fused silica. Opt. Express 20, 4389–4396 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Buividas, R. et al. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback. Nanotechnology 22, 055304 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Farid, N., Dasgupta, P. & O’Connor, G. M. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence. J. Phys. D Appl. Phys. 51, 155104 (2018).

    ADS 

    Google Scholar 

  • Wang, C. et al. Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses. Opt. Express 19, 24286–24297 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Höhm, S., Rosenfeld, A., Krüger, J. & Bonse, J. Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112, 014901 (2012).

    ADS 

    Google Scholar 

  • Nathala, C. S. R. et al. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Opt. Express OE 23, 5915–5929 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Kunz, C. et al. Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers. Carbon 133, 176–185 (2018).

    CAS 

    Google Scholar 

  • Rubin, M. Optical properties of soda lime silica glasses. Sol. Energy Mater. 12, 275–288 (1985).

    CAS 

    Google Scholar 

  • Wang, W. & Qi, L. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices. Adv. Funct. Mater. 29, 1807275 (2019).

    Google Scholar 

  • Pinto, C. L., Cornago, I., Buceta, A., Zugasti, E. & Bengoechea, J. Parametric analysis of random subwavelength structures with anti-reflective properties on glass applied to photovoltaics. Sol. Energy Mater. Sol. Cells 236, 111506 (2022).

    CAS 

    Google Scholar 

  • Pinto, C. L., Cornago, I., Buceta, A., Zugasti, E. & Bengoechea, J. Random subwavelength structures on glass to improve photovoltaic module performance. Sol. Energy Mater. Sol. Cells 246, 111935 (2022).

    CAS 

    Google Scholar 

  • Solodar, A., Cerkauskaite, A., Drevinskas, R., Kazansky, P. G. & Abdulhalim, I. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl. Phys. Lett. 113, 081603 (2018).

    ADS 

    Google Scholar 

  • Berger, J., Roch, T., Correia, S., Eberhardt, J. & Lasagni, A. F. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning. Thin Solid Films 612, 342–349 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Lopez-Santos, C. et al. Anisotropic resistivity surfaces produced in ITO films by laser-induced nanoscale self-organization. Adv. Opt. Mater. 9, 2001086 (2021).

    CAS 

    Google Scholar 

  • Yoshio, M. et al. One-dimensional ion-conductive polymer films: Alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Balestrieri, M. et al. Characterization and optimization of indium tin oxide films for heterojunction solar cells. Sol. Energy Mater. Sol. Cells 95, 2390–2399 (2011).

    CAS 

    Google Scholar 

  • Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Barnes, T. M. et al. Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2, 353–360 (2012).

    CAS 

    Google Scholar 

  • Du, J. et al. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat. Commun. 12, 5264 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albaladejo-Siguan, M. et al. Efficient and stable PbS quantum dot solar cells by triple-cation perovskite passivation. ACS Nano 14, 384–393 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Beaudry, A. L., Tucker, R. T., LaForge, J. M., Taschuk, M. T. & Brett, M. J. Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition. Nanotech. 23, 105608 (2012).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *