Interactions between genes altered during cardiotoxicity and neurotoxicity in zebrafish revealed using induced network modules analysis

Sub Levels


  • Hill, A. J., Teraoka, H., Heideman, W. & Peterson, R. E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 86, 6–19 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hahn, M. E. & Sadler, K. C. Casting a wide net: Use of diverse model organisms to advance toxicology. Dis. Model Mech. 13, dmm043844 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, B., Mally, A. & Liedtke, D. Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci. 22, 13417 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teame, T. et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 9, 68–77 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sneddon, L. U., Halsey, L. G. & Bury, N. R. Considering aspects of the 3Rs principles within experimental animal biology. J. Exp. Biol. 220, 3007–3016 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Geisler, R., Köhler, A., Dickmeis, T. & Strähle, U. Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Rep. 18, 1–2 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kamburov, A. et al. ConsensusPathDB: Toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herwig, R., Hardt, C., Lienhard, M. & Kamburov, A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat. Protoc. 11, 1889–1907 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emmert-Streib, F., Dehmer, M. & Haibe-Kains, B. Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2014.00038 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Committee, E. N. et al. Environmental Neurotoxicology. Choice Reviews Online, vol. 30 (1992).

  • d’Amora, M. & Giordani, S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front. Neurosci. 12, 976 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • d’Amora, M. & Giordani, S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00976 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Sendón, J. et al. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. Eur. Heart J. 41, 1720–1729 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Echeazarra, L., Hortigón-Vinagre, M. P., Casis, O. & Gallego, M. Adult and developing zebrafish as suitable models for cardiac electrophysiology and pathology in research and industry. Front. Physiol. 11, 607860 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17122123 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burmeister, A. R. & Marriott, I. The interleukin-10 family of cytokines and their role in the CNS. Front. Cell Neurosci. 12, 1–13 (2018).

    Article 

    Google Scholar 

  • Ruddle, N. H. Lymphotoxin and TNF: How it all began—A tribute to the travelers. Cytokine Growth Factor Rev. 25, 83–89 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russo, R. C., Garcia, C. C., Teixeira, M. M. & Amaral, F. A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 10, 593–619 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lowe, J. M. et al. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res. 74, 2182–2192 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, J. A. et al. The Nrf2–ARE pathway. Ann. N. Y. Acad. Sci. 1147, 61–69 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Araujo, J. A., Zhang, M. & Yin, F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front. Pharmacol. 3, (2012).

  • Reis, W. L., Biancardi, V. C., Zhou, Y. & Stern, J. E. A functional coupling between carbon monoxide and nitric oxide contributes to increased vasopressin neuronal activity in heart failure rats. Endocrinology 157, 2052–2066 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zenz, R. et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10, 201 (2007).

    Article 

    Google Scholar 

  • Jana, S. et al. SOX9: The master regulator of cell fate in breast cancer. Biochem. Pharmacol. 174, 113789 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fingar, D. C. et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell Biol. 24, 200–216 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kollmann, K. et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24, 167–181 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tigan, A.-S., Bellutti, F., Kollmann, K., Tebb, G. & Sexl, V. CDK6—A review of the past and a glimpse into the future: From cell-cycle control to transcriptional regulation. Oncogene 35, 3083–3091 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Romero-Pozuelo, J., Figlia, G., Kaya, O., Martin-Villalba, A. & Teleman, A. A. Cdk4 and Cdk6 couple the cell-cycle machinery to cell growth via mTORC1. Cell Rep. 31, 107504 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brouwers, B. et al. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep. 34, 108862 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abrisqueta, M. et al. Differential and competitive regulation of human melanocortin 1 receptor signaling by β-arrestin isoforms. J. Cell Sci. https://doi.org/10.1242/jcs.128322 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Van Gastel, J. et al. β-Arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders. Front. Pharmacol. 9, 1–21 (2018).

    Google Scholar 

  • Wiesener, M. S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gécz, J. et al. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62, 356–368 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Heinolainen, K. et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling. Circ. Res. 120, 1414–1425 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weijts, B. G. M. W., van Impel, A., Schulte-Merker, S. & de Bruin, A. Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS ONE 8, e73693 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanna, R. N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Szekely, Y. & Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today?. Cardiol. Ther. 7, 25–44 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akeson, A. L., Cameron, J. E., Le Cras, T. D., Whitsett, J. A. & Greenberg, J. M. Vascular endothelial growth factor-A induces prenatal neovascularization and alters bronchial development in mice. Pediatr. Res. 57, 82–88 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shakibaei, M., Csaki, C. & Mobasheri, A. Diverse Roles of Integrin Receptors in Articular Cartilage Vol. 197 (Springer, 2008).

    Google Scholar 

  • Li, L., Guan, Q., Dai, S., Wei, W. & Zhang, Y. Integrin β1 increases stem cell survival and cardiac function after myocardial infarction. Front. Pharmacol. https://doi.org/10.3389/fphar.2017.00135 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desjardins, C. A. & Naya, F. J. The function of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. J. Cardiovasc. Dev. Dis. https://doi.org/10.3390/jcdd3030026 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, M. et al. NOTCH4 single-nucleotide polymorphism is associated with brain arteriovenous malformation in a Chinese Han population. Eur. Neurol. 86, 107–115 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord. Spine 39, E865–E869 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Stingl, K. et al. Novel OPN1LW/OPN1MW Exon 3 haplotype-associated splicing defect in patients with X-linked cone dysfunction. Int. J. Mol. Sci. 23, 6868 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neitz, M. et al. Tritan color vision deficiency may be associated with an OPN1SW splicing defect and haploinsufficiency. J. Opt. Soc. Am. A 37, A26 (2020).

    Article 

    Google Scholar 

  • Cicatiello, L. et al. Estrogens and progesterone promote persistent CCND1 gene activation during G 1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol. Cell. Biol. 24, 7260–7274 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabbah, M., Courilleau, D., Mester, J. & Redeuilh, G. Estrogen induction of the cyclin D1 promoter: Involvement of a cAMP response-like element. Proc. Natl. Acad. Sci. 96, 11217–11222 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S. et al. Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. Aquat. Toxicol. 222, 105469 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, S. et al. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J. Endocrinol. 245, 39–51 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rawat, C., Kukal, S., Dahiya, U. R. & Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflamm. 16, 197 (2019).

    Article 

    Google Scholar 

  • FitzSimons, M. et al. Cardiac injury modulates critical components of prostaglandin E2 signaling during zebrafish heart regeneration. Sci. Rep. 10, 3095 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69, 4–10 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D. & Risau, W. Vascular endothelial growth factor and glioma angiogenesis: Coordinate induction of VEGF receptors, distribution of VEGF protein and possibleIn vivo regulatory mechanisms. Int. J. Cancer 59, 520–529 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krcek, R. et al. Vascular endothelial growth factor, irradiation, and axitinib have diverse effects on motility and proliferation of glioblastoma multiforme cells. Front. Oncol. 7, 182 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brett, J. O., Spring, L. M., Bardia, A. & Wander, S. A. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 23, 85 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venè, R. et al. Evaluation of glycosylated PTGS2 in colorectal cancer for NSAIDS-based adjuvant therapy. Cells 9, 683 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, M. et al. Positive correlation between LTA expression and overall immune activity suggests an increased probability of survival in uterine corpus endometrial carcinoma. Front. Cell Dev. Biol. 9, 793793 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Y.-B. et al. The relationship of kinase insert domain receptor gene polymorphisms and clinical outcome in advanced hepatocellular carcinoma patients treated with sorafenib. Med. Oncol. 31, 209 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Mescher, M. & Haarmann-Stemmann, T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol. Ther. 187, 71–87 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peklak-Scott, C., Smitherman, P. K., Townsend, A. J. & Morrow, C. S. Role of glutathione S-transferase P1–1 in the cellular detoxification of cisplatin. Mol. Cancer Ther. 7, 3247–3255 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hara, T. et al. Glutathione S-transferase P1 has protective effects on cell viability against camptothecin. Cancer Lett. 203, 199–207 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *