Einstein rings modulated by wavy dark matter from gravitational lensing anomalies

Sub Levels


  • Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Physics.manager 267195–373 (1996).

    Articles ADS Google Scholar

  • Collaboration of COSINE-100. An experiment exploring dark matter interactions using a sodium iodide detector. Nature 56483–86 (2018).

    Articles ADS Google Scholar

  • Bullock, JS & Boylan-Kolchin, M. A small challenge to the ΛCDM paradigm. Anne. Reverend Astron. Celestial body. 55343–387 (2017).

  • Sales, LV, Wetzel, A. & Fattahi, A. Baryon solutions and challenges for cosmological models of dwarf galaxies. nut. Astron. 6897–910 (2022).

  • Marsh, DJE Axion Cosmology. Physics.manager 6431–79 (2016).

    Articles ADS MathSciNet Google Scholar

  • Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 060651 (2006).

    Articles ADS MathSciNet Google Scholar

  • Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. and March-Russel, J. String axis. Physics. Rev.D 81123530 (2010).

    Articles ADS Google Scholar

  • Graham, WP, Irastorza, IG, Lamoreaux, SK, Lindner, A. & van Bibber, KA Experimental search for axions and axion-like particles. Anne. Rev. Nucl. Department. Science. 65485–514 (2014).

    Articles ADS Google Scholar

  • Bertram, C. et al. Look for invisible axion dark matter in the mass range of 3.3–4.2 μeV. Physics. Rev. Lett. 127261803 (2021).

    Articles ADS Google Scholar

  • Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: Wave properties of ultralight particles. Physics. Rev. Lett. 851158–1161 (2000).

    Articles ADS Google Scholar

  • Peebles, PJE Fluid Dark Matter. Celestial body. J. 534L127–L129 (2000).

    Articles ADS Google Scholar

  • Sikivie, P. & Yang, Q. Bose-Einstein condensation of dark matter axions. Physics. Rev. Lett. 103111301 (2009).

    Articles ADS Google Scholar

  • Schive, HY, Chiueh, T. and Broadhurst, T. Cosmic structure as quantum interference of coherent dark waves. Nature. Physics. Ten496–499 (2014).

    Articles ADS Google Scholar

  • Hui, L., Ostriker, JP, Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Physics. Rev.D 95043541 (2017).

    Articles ADS Google Scholar

  • Niemeyer, JC Small-scale structures of fuzzy and axion-like dark matter. program. Department. nucleus. Physics. 113103787 (2020).

  • Veltmaat, J., Niemeyer, JC & Schwabe, B. Formation and structure of ultralight bosonic dark matter halos. Physics. Rev.D 98043509 (2018).

    Articles ADS Google Scholar

  • Mocz, P. et al. First star-forming structures in fuzzy cosmic filaments. Physics. Rev. Lett. one two three141301 (2019).

    Articles ADS Google Scholar

  • Schive, HY, etc. Understanding the core-halo relationship in quantum-wave dark matter by 3D simulation. Physics. Rev. Lett. 113261302 (2014).

    Articles ADS Google Scholar

  • Broadhurst, T., De Martino, I., Luu, HN, Smoot, GF & Tye, S.-HH Bose-Einstein Ghost galaxies as dark matter solitons. Physics. Rev.D 101083012 (2020).

    Articles ADS Google Scholar

  • De Martino, I., Broadhurst, T., Tye, SHH, Chiueh, T. & Schive, Dynamic Evidence for Dark Solitonic Cores in HY 109M. in the Milky Way. Physics.dark universe 28100503 (2020).

    Articles Google Scholar

  • Leon, E. et al. Magnification Bias of Distant Galaxies in the Hubble Frontier Field: A Test of Wave versus Particle Dark Matter Predictions. Celestial body. J. 862156 (2018).

    Articles ADS Google Scholar

  • Pozo, A. et al. Detection of a universal core-halo transition in dwarf galaxies, predicted by Bose-Einstein dark matter.preprint arXiv https://arxiv.org/abs/2010.10337 (2020).

  • Pozo, A. et al. Waves of dark matter and superdiffuse galaxies. Monday no. R. Astron.society 5042868–2876 (2021).

    Articles ADS Google Scholar

  • Herrera-Martín, A., Hendry, M., Gonzalez-Morales, AX & Ureña-López, LA Strong gravitational lensing by wavy dark matter halos. Celestial body. J. 87211 (2019).

    Articles ADS Google Scholar

  • Read, JI, Walker, MG & Steger, P. Dark matter heats up in dwarf galaxies. Monday no. R. Astron.society 4841401–1420 (2019).

    Articles ADS Google Scholar

  • Hayashi, K., Chiba, M. & Ishiyama, T. Diversity of dark matter density profiles in galactic dwarf spheroid satellites. Celestial body. J. 90445 (2020).

    Articles ADS Google Scholar

  • Read, JI, Walker, MG & Steger, P. A case of Draco’s cold dark matter cusp. Monday no. R. Astron.society 481860–877 (2018).

    Articles ADS Google Scholar

  • Hayashi, K., Yutaka, H., Masashi, C. & Ishiyama, T. Dark matter halo properties of galactic dwarf moons: impact on chemical dynamics evolution of moons and challenges to ΛCDM.preprint arXiv https://arxiv.org/abs/2206.02821 (2022).

  • Schutz, K. Subhalo mass functions and ultralight bosonic dark matter. Physics. Rev.D 101123026 (2020).

    Articles ADS Google Scholar

  • Hayashi, K., Ferreira, EGM & Chan, HYJ Narrowing of the mass range of fuzzy dark matter by ultra-faint dwarfs. Celestial body. J. Lett. 912L3 (2021).

    Articles ADS Google Scholar

  • Iršic, V., Viel, M., Haehnelt, MG, Bolton, JS & Becker, GD Lyman-α First constraints on fuzzy dark matter from forest data and hydrodynamic simulations. Physics. Rev. Lett. 119031302 (2017).

    Articles ADS Google Scholar

  • Del Popolo, A. & Le Delliou, M. A review of solutions to the core cusp problem in ΛCDM models. galaxy 9123 (2021).

    Articles ADS Google Scholar

  • Chan, JHH, Schive, HY, Wong, SK, Chiueh, T. & Broadhurst, T. Multiple images and flux ratio anomalies of fuzzy gravitational lensing. Physics. Rev. Lett. 125111102 (2020).

    Articles ADS Google Scholar

  • Nierenberg, AM et al. Double Dark Matter Vision: Double the number of narrow line lenses and compact source lenses with WFC3 grisms. Monday no. R. Astron.society 4925314–5335 (2020).

    Articles ADS Google Scholar

  • Keeton, CR, Gaudi, BS & Petters, AO Identification of lenses in small structures. I. Kasplens. Celestial body. J. 598138 (2003).

    Articles ADS Google Scholar

  • Kochanek, CS & Dalal, N. Testing substructures of gravitational lensing. Celestial body. J. 61069–79 (2004).

    Articles ADS Google Scholar

  • Goldberg, DM, Chessey, MK, Harris, WB & Richards, GT Fold lens flux anomalies: a geometric approach. Celestial body. J. 715793–802 (2010).

    Articles ADS Google Scholar

  • Shajib, AJ et al. Do all powerful lens models complain in their own way? Uniform modeling of a sample of 13 quadruple + imaged quasars. Monday no. R. Astron.society 4835649–5671 (2019).

    Articles ADS Google Scholar

  • Xu, D. et al. How well can the cold dark matter substructure explain the observed radio flux ratio anomalies? Monday no. R. Astron.society 4473189–3206 (2015).

    Articles ADS Google Scholar

  • Hartley, P., Jackson, N., Sluse, D., Stacey, HR & Vives-Arias, H. Intense lensing reveals a submicrojoe radio-quiet quasar jet. Monday no. R. Astron.society 4853009–3023 (2019).

    Articles ADS Google Scholar

  • Spingola, C. et al. SHARP- V. Modeling of gravitational lensing radio arcs imaged by global VLBI observations. Monday no. R. Astron.society 4784816–4829 (2018).

    Articles ADS Google Scholar

  • Biggs, AD et al. Radio, optical and infrared observations for class B0128+437. Monday no. R. Astron.society 350949–961 (2004).

    Articles ADS Google Scholar

  • Amara, A., Metcalf, RB, Cox, TJ & Ostriker, JP Simulation of strong gravitational lensing with substructure. Monday no. R. Astron.society 3671367–1378 (2006).

    Articles ADS Google Scholar

  • Diego, JM et al. Dark matter under the microscope: Constrain compact dark matter with caustic cross events. Celestial body. J. 85725 (2018).

    Articles ADS Google Scholar

  • Kochanek, CS et al. Results of his CASTLES investigation of gravitational lensing. AIP meeting minutes 470163–175 (1999).

    ADS Google Scholar

  • Laroche, A., Gilman, D., Li, X., Bovy, J. & Du, X. Quantum fluctuations masquerade as halos: ultralight dark matter boundaries from quadruple-imaged quasars. Monday no. R. Astron.society 5171867–1883 ​​(2022).

    Articles ADS Google Scholar

  • Kawai, H., Oguri, M., Amruth, A., Broadhurst, T. & Lim, J. Analytical model of subgalactic matter power spectrum in fuzzy dark matter halos. Celestial body. J. 92561 (2022).

    Articles ADS Google Scholar

  • Murray, SG Powerbox: A Python package for creating structured fields with isotropic power spectra. J. Open Source Software. 385 (2018).

    Articles Google Scholar

  • Dalal, N., Bovy, J., Hui, L. & Li, X. Don’t cross the river: caustics from fuzzy dark matter. J. Cosmo. Astro Part. 2021076 (2021).

  • Masato Oguri. Mass distribution reconsideration of SDSS J1004+4112. Public Astron.Social Japanese 621017–1024 (2010).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *