Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Physics.manager 267195–373 (1996).
Collaboration of COSINE-100. An experiment exploring dark matter interactions using a sodium iodide detector. Nature 56483–86 (2018).
Bullock, JS & Boylan-Kolchin, M. A small challenge to the ΛCDM paradigm. Anne. Reverend Astron. Celestial body. 55343–387 (2017).
Sales, LV, Wetzel, A. & Fattahi, A. Baryon solutions and challenges for cosmological models of dwarf galaxies. nut. Astron. 6897–910 (2022).
Marsh, DJE Axion Cosmology. Physics.manager 6431–79 (2016).
Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 060651 (2006).
Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. and March-Russel, J. String axis. Physics. Rev.D 81123530 (2010).
Graham, WP, Irastorza, IG, Lamoreaux, SK, Lindner, A. & van Bibber, KA Experimental search for axions and axion-like particles. Anne. Rev. Nucl. Department. Science. 65485–514 (2014).
Bertram, C. et al. Look for invisible axion dark matter in the mass range of 3.3–4.2 μeV. Physics. Rev. Lett. 127261803 (2021).
Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: Wave properties of ultralight particles. Physics. Rev. Lett. 851158–1161 (2000).
Peebles, PJE Fluid Dark Matter. Celestial body. J. 534L127–L129 (2000).
Sikivie, P. & Yang, Q. Bose-Einstein condensation of dark matter axions. Physics. Rev. Lett. 103111301 (2009).
Schive, HY, Chiueh, T. and Broadhurst, T. Cosmic structure as quantum interference of coherent dark waves. Nature. Physics. Ten496–499 (2014).
Hui, L., Ostriker, JP, Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Physics. Rev.D 95043541 (2017).
Niemeyer, JC Small-scale structures of fuzzy and axion-like dark matter. program. Department. nucleus. Physics. 113103787 (2020).
Veltmaat, J., Niemeyer, JC & Schwabe, B. Formation and structure of ultralight bosonic dark matter halos. Physics. Rev.D 98043509 (2018).
Mocz, P. et al. First star-forming structures in fuzzy cosmic filaments. Physics. Rev. Lett. one two three141301 (2019).
Schive, HY, etc. Understanding the core-halo relationship in quantum-wave dark matter by 3D simulation. Physics. Rev. Lett. 113261302 (2014).
Broadhurst, T., De Martino, I., Luu, HN, Smoot, GF & Tye, S.-HH Bose-Einstein Ghost galaxies as dark matter solitons. Physics. Rev.D 101083012 (2020).
De Martino, I., Broadhurst, T., Tye, SHH, Chiueh, T. & Schive, Dynamic Evidence for Dark Solitonic Cores in HY 109M.⊙ in the Milky Way. Physics.dark universe 28100503 (2020).
Leon, E. et al. Magnification Bias of Distant Galaxies in the Hubble Frontier Field: A Test of Wave versus Particle Dark Matter Predictions. Celestial body. J. 862156 (2018).
Pozo, A. et al. Detection of a universal core-halo transition in dwarf galaxies, predicted by Bose-Einstein dark matter.preprint arXiv https://arxiv.org/abs/2010.10337 (2020).
Pozo, A. et al. Waves of dark matter and superdiffuse galaxies. Monday no. R. Astron.society 5042868–2876 (2021).
Herrera-Martín, A., Hendry, M., Gonzalez-Morales, AX & Ureña-López, LA Strong gravitational lensing by wavy dark matter halos. Celestial body. J. 87211 (2019).
Read, JI, Walker, MG & Steger, P. Dark matter heats up in dwarf galaxies. Monday no. R. Astron.society 4841401–1420 (2019).
Hayashi, K., Chiba, M. & Ishiyama, T. Diversity of dark matter density profiles in galactic dwarf spheroid satellites. Celestial body. J. 90445 (2020).
Read, JI, Walker, MG & Steger, P. A case of Draco’s cold dark matter cusp. Monday no. R. Astron.society 481860–877 (2018).
Hayashi, K., Yutaka, H., Masashi, C. & Ishiyama, T. Dark matter halo properties of galactic dwarf moons: impact on chemical dynamics evolution of moons and challenges to ΛCDM.preprint arXiv https://arxiv.org/abs/2206.02821 (2022).
Schutz, K. Subhalo mass functions and ultralight bosonic dark matter. Physics. Rev.D 101123026 (2020).
Hayashi, K., Ferreira, EGM & Chan, HYJ Narrowing of the mass range of fuzzy dark matter by ultra-faint dwarfs. Celestial body. J. Lett. 912L3 (2021).
Iršic, V., Viel, M., Haehnelt, MG, Bolton, JS & Becker, GD Lyman-α First constraints on fuzzy dark matter from forest data and hydrodynamic simulations. Physics. Rev. Lett. 119031302 (2017).
Del Popolo, A. & Le Delliou, M. A review of solutions to the core cusp problem in ΛCDM models. galaxy 9123 (2021).
Chan, JHH, Schive, HY, Wong, SK, Chiueh, T. & Broadhurst, T. Multiple images and flux ratio anomalies of fuzzy gravitational lensing. Physics. Rev. Lett. 125111102 (2020).
Nierenberg, AM et al. Double Dark Matter Vision: Double the number of narrow line lenses and compact source lenses with WFC3 grisms. Monday no. R. Astron.society 4925314–5335 (2020).
Keeton, CR, Gaudi, BS & Petters, AO Identification of lenses in small structures. I. Kasplens. Celestial body. J. 598138 (2003).
Kochanek, CS & Dalal, N. Testing substructures of gravitational lensing. Celestial body. J. 61069–79 (2004).
Goldberg, DM, Chessey, MK, Harris, WB & Richards, GT Fold lens flux anomalies: a geometric approach. Celestial body. J. 715793–802 (2010).
Shajib, AJ et al. Do all powerful lens models complain in their own way? Uniform modeling of a sample of 13 quadruple + imaged quasars. Monday no. R. Astron.society 4835649–5671 (2019).
Xu, D. et al. How well can the cold dark matter substructure explain the observed radio flux ratio anomalies? Monday no. R. Astron.society 4473189–3206 (2015).
Hartley, P., Jackson, N., Sluse, D., Stacey, HR & Vives-Arias, H. Intense lensing reveals a submicrojoe radio-quiet quasar jet. Monday no. R. Astron.society 4853009–3023 (2019).
Spingola, C. et al. SHARP- V. Modeling of gravitational lensing radio arcs imaged by global VLBI observations. Monday no. R. Astron.society 4784816–4829 (2018).
Biggs, AD et al. Radio, optical and infrared observations for class B0128+437. Monday no. R. Astron.society 350949–961 (2004).
Amara, A., Metcalf, RB, Cox, TJ & Ostriker, JP Simulation of strong gravitational lensing with substructure. Monday no. R. Astron.society 3671367–1378 (2006).
Diego, JM et al. Dark matter under the microscope: Constrain compact dark matter with caustic cross events. Celestial body. J. 85725 (2018).
Kochanek, CS et al. Results of his CASTLES investigation of gravitational lensing. AIP meeting minutes 470163–175 (1999).
Laroche, A., Gilman, D., Li, X., Bovy, J. & Du, X. Quantum fluctuations masquerade as halos: ultralight dark matter boundaries from quadruple-imaged quasars. Monday no. R. Astron.society 5171867–1883 (2022).
Kawai, H., Oguri, M., Amruth, A., Broadhurst, T. & Lim, J. Analytical model of subgalactic matter power spectrum in fuzzy dark matter halos. Celestial body. J. 92561 (2022).
Murray, SG Powerbox: A Python package for creating structured fields with isotropic power spectra. J. Open Source Software. 385 (2018).
Dalal, N., Bovy, J., Hui, L. & Li, X. Don’t cross the river: caustics from fuzzy dark matter. J. Cosmo. Astro Part. 2021076 (2021).
Masato Oguri. Mass distribution reconsideration of SDSS J1004+4112. Public Astron.Social Japanese 621017–1024 (2010).