Dose optimization in surgical prophylaxis: sub-inhibitory dosing of vancomycin increases rates of biofilm formation and the rates of surgical site infection

Sub Levels


  • Sandegren, L. Selection of antibiotic resistance at very low antibiotic concentrations. Ups J. Med. Sci. 119, 103–107. https://doi.org/10.3109/03009734.2014.904457 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, S. P. et al. Is there a difference in infection risk between single and multiple doses of prophylactic antibiotics? A meta-analysis. Clin. Orthop. Relat. Res. 477, 1577–1590. https://doi.org/10.1097/CORR.0000000000000619 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, T. L. et al. Perioperative antibiotic prophylaxis in total joint arthroplasty: A single dose is as effective as multiple doses. J. Bone Jt. Surg. Am. 101, 429–437. https://doi.org/10.2106/JBJS.18.00336 (2019).

    Article 

    Google Scholar 

  • Urish, K. L. et al. A multicenter study of irrigation and debridement in total knee arthroplasty periprosthetic joint infection: Treatment failure is high. J. Arthroplasty 33, 1154–1159. https://doi.org/10.1016/j.arth.2017.11.029 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shah, M. Q. et al. Surgical site infection in orthopaedic implants and its common bacteria with their sensitivities to antibiotics, in open reduction internal fixation. J. Ayub Med. Coll. Abbottabad 29, 50–53 (2017).

    PubMed 

    Google Scholar 

  • Sugarman, B. Infections and prosthetic devices. Am. J. Med. 81, 78–84. https://doi.org/10.1016/0002-9343(86)90517-6 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Izakovicova, P., Borens, O. & Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 4, 482–494. https://doi.org/10.1302/2058-5241.4.180092 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmerli, W., Trampuz, A. & Ochsner, P. E. Prosthetic-joint infections. N. Engl. J. Med. 351, 1645–1654. https://doi.org/10.1056/NEJMra040181 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohsen, S., Dickinson, J. A. & Somayaji, R. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Phys. 66, 651–659 (2020).

    Google Scholar 

  • Berrios-Torres, S. I. et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 152, 784–791. https://doi.org/10.1001/jamasurg.2017.0904 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Leaper, D. J. & Edmiston, C. E. World Health Organization: Global guidelines for the prevention of surgical site infection. J. Hosp. Infect. 95, 135–136. https://doi.org/10.1016/j.jhin.2016.12.016 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Inabathula, A. et al. Extended oral antibiotic prophylaxis in high-risk patients substantially reduces primary total hip and knee arthroplasty 90-day infection rate. J. Bone Jt. Surg. Am. 100, 2103–2109. https://doi.org/10.2106/JBJS.17.01485 (2018).

    Article 

    Google Scholar 

  • Frank, J. M. et al. The Mark Coventry, MD, Award: Oral antibiotics reduce reinfection after two-stage exchange: A multicenter, randomized controlled trial. Clin. Orthop. Relat. Res. 475, 56–61. https://doi.org/10.1007/s11999-016-4890-4 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Shah, N. B. et al. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin. Infect. Dis. 70, 559–565. https://doi.org/10.1093/cid/ciz261 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schadow, K. H., Simpson, W. A. & Christensen, G. D. Characteristics of adherence to plastic tissue culture plates of coagulase-negative staphylococci exposed to subinhibitory concentrations of antimicrobial agents. J. Infect. Dis. 157, 71–77. https://doi.org/10.1093/infdis/157.1.71 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob. Agents Chemother. 54, 2707–2711. https://doi.org/10.1128/AAC.01565-09 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cargill, J. S. & Upton, M. Low concentrations of vancomycin stimulate biofilm formation in some clinical isolates of Staphylococcus epidermidis. J. Clin. Pathol. 62, 1112–1116. https://doi.org/10.1136/jcp.2009.069021 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175. https://doi.org/10.1038/nature03912 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boehm, A. et al. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol. Microbiol. 72, 1500–1516. https://doi.org/10.1111/j.1365-2958.2009.06739.x (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Majtan, J., Majtanova, L., Xu, M. & Majtan, V. In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. J. Appl. Microbiol. 104, 1294–1301. https://doi.org/10.1111/j.1365-2672.2007.03653.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drenjancevic, D., Vranes, J., Bedenic, B. & Sakic-Zdravcevic, K. In vitro effect of subinhibitory concentrations of ceftazidime and meropenem on the serum sensitivity of Pseudomonas aeruginosa strains. Coll. Antropol. 31, 221–225 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bisognano, C., Vaudaux, P. E., Lew, D. P., Ng, E. Y. & Hooper, D. C. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob. Agents Chemother. 41, 906–913 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carsenti-Etesse, H. et al. Effects of subinhibitory concentrations of vancomycin and teicoplanin on adherence of staphylococci to tissue culture plates. Antimicrob. Agents Chemother. 37, 921–923. https://doi.org/10.1128/aac.37.4.921 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bassetti, M. et al. Current antibiotic management of prosthetic joint infections in Italy: The “Udine strategy”. J. Antimicrob. Chemother. 69(Suppl 1), i41–i45. https://doi.org/10.1093/jac/dku251 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urish, K. L. et al. Antibiotic-tolerant Staphylococcus aureus biofilm persists on arthroplasty materials. Clin. Orthop. Relat. Res. 474, 1649–1656. https://doi.org/10.1007/s11999-016-4720-8 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mandell, J. B. et al. Large variations in clinical antibiotic activity against Staphylococcus aureus biofilms of periprosthetic joint infection isolates. J. Orthop. Res. 37, 1604–1609. https://doi.org/10.1002/jor.24291 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, D. et al. The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection. mBio 10, 19. https://doi.org/10.1128/mBio.01658-19 (2019).

    Article 
    CAS 

    Google Scholar 

  • Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing.

  • Clinical and Laboratory Standards Institute. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (2018).

  • Reed, L. J. A simple method of estimating fifty per cent endpoints. Am. J. Hygeine 27, 493–497 (1938).

    Google Scholar 

  • Charnley, J. & Eftekhar, N. Postoperative infection in total prosthetic replacement arthroplasty of the hip-joint. With special reference to the bacterial content of the air of the operating room. Br. J. Surg. 56, 641–649. https://doi.org/10.1002/bjs.1800560902 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cirioni, O. et al. In vitro and in vivo effects of sub-MICs of pexiganan and imipenem on Pseudomonas aeruginosa adhesion and biofilm development. Infez. Med. 21, 287–295 (2013).

    PubMed 

    Google Scholar 

  • Wyles, C. C. et al. 2019 John Charnley Award: Increased risk of prosthetic joint infection following primary total knee and hip arthroplasty with the use of alternative antibiotics to cefazolin: The value of allergy testing for antibiotic prophylaxis. Bone Jt. J. 101, 9–15 (2019).

    Article 

    Google Scholar 

  • Blumenthal, K. G. et al. The impact of a reported penicillin allergy on surgical site infection risk. Clin. Infect. Dis. 66, 329–336. https://doi.org/10.1093/cid/cix794 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Blumenthal, K. G. et al. Risk of meticillin resistant Staphylococcus aureus and Clostridium difficile in patients with a documented penicillin allergy: Population based matched cohort study. BMJ 361, k2400. https://doi.org/10.1136/bmj.k2400 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macy, E. & Poon, K. Y. T. Self-reported antibiotic allergy incidence and prevalence: Age and sex effects. Am. J. Med. 122, 778. https://doi.org/10.1016/j.amjmed.2009.01.034 (2009).

    Article 

    Google Scholar 

  • Trubiano, J. A., Adkinson, N. F. & Phillips, E. J. Penicillin allergy is not necessarily forever. JAMA 318, 82–83. https://doi.org/10.1001/jama.2017.6510 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macy, E., Khan, D. A., Castells, M. C. & Lang, D. M. Penicillin allergy testing: A key component of antibiotic stewardship. Clin. Infect. Dis. 64, 531–532. https://doi.org/10.1093/cid/ciw795 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Estes, K. S. & Derendorf, H. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin. Eur. J. Med. Res. 15, 533–543. https://doi.org/10.1186/2047-783x-15-12-533 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hermsen, E. D. et al. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin. Drug Saf. 9, 9–14. https://doi.org/10.1517/14740330903413514 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeffres, M. N., Isakow, W., Doherty, J. A., Micek, S. T. & Kollef, M. H. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin. Ther. 29, 1107–1115. https://doi.org/10.1016/j.clinthera.2007.06.014 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kralovicova, K. et al. Do vancomycin serum levels predict failures of vancomycin therapy or nephrotoxicity in cancer patients? J. Chemother. 9, 420–426. https://doi.org/10.1179/joc.1997.9.6.420 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pritchard, L. et al. Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am. J. Med. 123, 1143–1149. https://doi.org/10.1016/j.amjmed.2010.07.025 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Hal, S. J., Paterson, D. L. & Lodise, T. P. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob. Agents Chemother. 57, 734–744. https://doi.org/10.1128/AAC.01568-12 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong-Beringer, A., Joo, J., Tse, E. & Beringer, P. Vancomycin-associated nephrotoxicity: A critical appraisal of risk with high-dose therapy. Int. J. Antimicrob. Agents 37, 95–101. https://doi.org/10.1016/j.ijantimicag.2010.10.013 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez Colomo, O. et al. Impact of administration of vancomycin or linezolid to critically ill patients with impaired renal function. Eur. J. Clin. Microbiol. Infect. Dis. 30, 635–643. https://doi.org/10.1007/s10096-010-1133-6 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rybak, M. J. et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 29, 1275–1279. https://doi.org/10.1592/phco.29.11.1275 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rybak, M. J. et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 77, 835–864. https://doi.org/10.1093/ajhp/zxaa036 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Prybylski, J. P. Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: A meta-analysis of observational studies. Pharmacotherapy 35, 889–898. https://doi.org/10.1002/phar.1638 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aljefri, D. M. et al. Vancomycin area under the curve and acute kidney injury: A meta-analysis. Clin. Infect. Dis. 69, 1881–1887. https://doi.org/10.1093/cid/ciz051 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *