Alterations in trimethylamine-N-oxide in response to Empagliflozin therapy: a secondary analysis of the EMMY trial | Cardiovascular Diabetology

Sub Levels


  • Al-Rubaye H, Perfetti G, Kaski J-C. The role of microbiota in cardiovascular risk: focus on trimethylamine oxide. Curr Probl Cardiol. 2019;44:182–96.

    Article 
    PubMed 

    Google Scholar 

  • Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021;20:301–19.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li D, Lu Y, Yuan S, Cai X, He Y, Chen J, et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am J Clin Nutr. 2022;116:230–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, et al. The gut microbiota and its interactions with cardiovascular disease. Micriob Biotechnol. 2020;13:637–56.

    Article 
    CAS 

    Google Scholar 

  • Gong D, Zhang L, Zhang Y, Wang F, Zhao Z, Zhou X. Gut microbial metabolite trimethylamine N-oxide is related to thrombus formation in atrial fibrillation patients. Am J Med Sci. 2019;358:422–8.

    Article 
    PubMed 

    Google Scholar 

  • Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waleed KB, Tse G, Lu Y-K, Peng C-N, Tu H, Ding L-G, et al. Trimethylamine N-oxide is associated with coronary atherosclerotic burden in non-ST-segment myocardial infarction patients: SZ-NSTEMI prospective cohort study. Rev Cardiovasc Med. 2021;22:231–8.

    Article 
    PubMed 

    Google Scholar 

  • Zhou X, Jin M, Liu L, Yu Z, Lu X, Zhang H. Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction. ESC Heart Fail. 2020;7:188–93.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li N, Zhou J, Wang Y, Chen R, Li J, Zhao X, et al. Association between trimethylamine N-oxide and prognosis of patients with acute myocardial infarction and heart failure. ESC Heart Fail. 2022;9:3846–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Senthong V, Wang Z, Li XS, Fan Y, Wu Y, Wilson Tang WH, et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc. 2016;5:e002816.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng Z, Tan Y, Liu C, Zhou P, Li J, Zhou J, et al. Relation of circulating trimethylamine N-oxide with coronary atherosclerotic burden in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2019;123:894–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan Y, Sheng Z, Zhou P, Liu C, Zhao H, Song L, et al. Plasma trimethylamine N-oxide as a novel biomarker for plaque rupture in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2019;12:e007281.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baranyi A, Enko D, von Lewinski D, Rothenhäusler H-B, Amouzadeh-Ghadikolai O, Harpf H, et al. Assessment of trimethylamine N-oxide (TMAO) as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder (PTSD) after acute myocardial infarction. Eur J Psychotraumatol. 2021;12:1920201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang WHW, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21:91–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong Z, Zheng S, Shen Z, Luo Y, Hai X. Trimethylamine N-oxide is associated with heart failure risk in patients with preserved ejection fraction. Lab Med. 2021;52:346–51.

    Article 
    PubMed 

    Google Scholar 

  • Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, et al. Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary heart disease risk. JACC. 2020;75:763–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Almesned MA, Prins FM, Lipšic E, Connelly MA, Garcia E, Dullaart RPF, et al. Temporal course of plasma trimethylamine N-oxide (TMAO) levels in ST-elevation myocardial infarction. J Clin Med. 2021;10:5677.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsuzawa Y, Nakahashi H, Konishi M, Sato R, Kawashima C, Kikuchi S, et al. Microbiota-derived trimethylamine N-oxide predicts cardiovascular risk after STEMI. Sci Rep. 2019;9:11647.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li N, Wang Y, Zhou J, Chen R, Li J, Zhao X, et al. Association between the changes in trimethylamine N-oxide-related metabolites and prognosis of patients with acute myocardial infarction: a prospective study. J Cardiovasc Dev Dis. 2022;9:380.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider C, Okun JG, Schwarz KV, Hauke J, Zorn M, Nürnberg C, et al. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days. Eur J Neurol. 2020;27:1596–603.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ringel C, Dittrich J, Gaudl A, Schellong P, Beuchel CF, Baber R, et al. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis. 2021;335:62–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, et al. Mechanisms of cardiorenal protection with SGLT2 inhibitors in patients with T2DM based on network pharmacology. Front Cardiovasc Med. 2022;9:857952.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Lewinski D, Benedikt M, Tripolt N, Wallner M, Sourij H, Kolesnik E. Can sodium-glucose cotransporter 2 inhibitors be beneficial in patients with acute myocardial infarction? Kardiol Pol. 2021;79:503–9.

    Google Scholar 

  • Wang D, Liu J, Zhou L, Zhang Q, Li M, Xiao X. Effects of oral glucose-lowering agents on gut microbiota and microbial metabolites. Front Endocrinol. 2022;13:905171.

    Article 

    Google Scholar 

  • Deng L, Yang Y, Xu G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867:159234.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu M, Zheng J, Hou T, Lin H, Wang T, Wang S, et al. SGLT2 inhibition, choline metabolites, and cardiometabolic diseases: a mediation Mendelian randomization study. Diabetes Care. 2022;45:2718–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17:62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. Am Heart J. 2020;221:39–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J. 2022;43:4421–32.

    Article 

    Google Scholar 

  • Enko D, Zelzer S, Baranyi A, Herrmann M, Meinitzer A. Determination of trimethylamine-N-oxide by a simple isocratic high-throughput liquid-chromatography tandem mass-spectrometry method. Clin Lab. 2020;66:1801–8.

    Article 
    CAS 

    Google Scholar 

  • Suzuki T, Yazaki Y, Voors AA, Jones DJL, Chan DCS, Anker SD, et al. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. Eur J Heart Fail. 2019;21:877–86.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med. 2020;58:733–40.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang Z, Levison BS, Hazen JE, Donahue L, Li X-M, Hazen SL. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem. 2014;455:35–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38:2948–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6:e004947.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heerspink HJL, Cherney DZI. Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin J Am Soc Nephrol. 2021;16:1278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Missailidis C, Hällqvist J, Qureshi AR, Barany P, Heimbürger O, Lindholm B, et al. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE. 2016;11:e0141738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo F, Qiu X, Tan Z, Li Z, Ouyang D. Plasma trimethylamine n-oxide is associated with renal function in patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord. 2020;20:394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-Oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9:e002314.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huc T, Drapala A, Gawrys M, Konop M, Bielinska K, Zaorska E, et al. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am J Physiol Heart Circ Physiol. 2018;315:H1805–20.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou J, Yu S, Tan Y, Zhou P, Liu C, Sheng Z, et al. Trimethylamine N-oxide was not associated with 30-day left ventricular systolic dysfunction in patients with a first anterior ST-segment elevation myocardial infarction after primary revascularization: a sub-analysis from an optical coherence tomography registry. Front Cardiovasc Med. 2020;7:613684.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koay YC, Chen Y-C, Wali JA, Luk AWS, Li M, Doma H, et al. Plasma levels of trimethylamine-N-oxide can be increased with “healthy” and “unhealthy” diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res. 2021;117:435–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *